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Key Points

• The plasma contact system is
activated early in AD mice
and temporally correlated with
the onset of brain
inflammation.

• Depletion of contact system
initiator FXII ameliorates brain
pathology and cognitive
impairment in AD mice.

Vascular abnormalities and inflammation are found in many Alzheimer disease (AD)

patients, but whether these changes play a causative role in AD is not clear. The factor XII

(FXII) –initiatedcontact systemcan triggerbothvascular pathologyand inflammationand

is activated in AD patients and AD mice. We have investigated the role of the contact

system inADpathogenesis. Cleavage of high-molecular-weight kininogen (HK), amarker

for activation of the inflammatory arm of the contact system, is increased in a mouse

model of AD, and this cleavage is temporally correlated with the onset of brain

inflammation. Depletion of FXII in ADmice inhibited HK cleavage in plasma and reduced

neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. More-

over, FXII-depleted AD mice showed better cognitive function than untreated AD mice.

These results indicate that FXII-mediated contact system activation contributes to AD

pathogenesis, and therefore this systemmayoffer novel targets for AD treatment. (Blood.

2017;129(18):2547-2556)

Introduction

Alzheimer disease (AD) is a fatal cognitive disorder that results in
neuronal degeneration. Despite extensive investigation, a huge gap
exists in our understanding of the pathology ofAD.Amyloid beta (Ab)
is generally recognized as a primary driver of the disease.1,2 It is also
known that AD patients suffer extensive neuronal death. The gap is the
link between Ab and neuronal degeneration.

It is therefore important for our understanding of AD to consider
pathways that can lead to neuronal death and determine whether Ab
can influence these pathways. Most AD patients suffer from vascular
abnormalities3-12 and neuroinflammation,13-15 and there is strong
evidence that these pathologies are early core pathologies ofAD.Both
vascular abnormalities and inflammation can trigger neuronal death,
but it is not clear whether Ab can affect these pathologies.

The contact system, driven by factor XII (FXII), can launch both
prothrombotic (through activation of factor XI [FXI]) and proinflam-
matory (through activation of plasma prekallikrein [PPK]) pathways,
leading to the release of bradykinin from high-molecular-weight
kininogen (HK).16 This system could play a role in the vascular and
inflammatory aspects of AD pathology.We and others have shown that
Ab can initiate the contact system in vitro and in vivo,17-20 and AD
patients and AD mice both have evidence of a contact activation.19,21

In this study, we show that increased HK cleavage, a marker for
activation of the inflammatory arm of the contact pathway, is temporally
correlated in AD mice with the onset of brain inflammation. Depletion
of plasma FXII, the initiator of the contact pathway, using antisense
oligonucleotide (ASO)–mediated messenger RNA knockdown,

inhibited HK cleavage in AD mouse plasma and reduced neuro-
inflammation, fibrin(ogen) deposition, and neuronal degeneration in the
brain. Moreover, FXII-ASO–treated AD mice showed better cognitive
function thancontrolASO(CTL-ASO)–treatedADmice.Therefore, our
results provide a mechanistic link between Ab and neuroinflammation
and vascular abnormities, which could result in neuronal degeneration.

Methods

Animals

All animal experiments were conducted in accordance with the guidelines of the
USNational Institutes ofHealth (NIH)Guide for theCare andUse of Laboratory
Animals and with approval from the Animal Care and Use Committee of The
Rockefeller University. TgCRND8 transgenic mice (provided byA. Chishti and
D. Westaway, University of Toronto, Toronto, ON, Canada) have three APP
mutations (K670N, M671L, and V717F) driven by the human prion protein
promoter.22 In all experiments, wild-type (WT) littermateswere used as controls.
For plasma HK and brain inflammation analyses, WT and ADmice at 2, 3, and
6 months of age were used (n 5 12 per group per age). FXII-ASO (murine
sequence)23 and CTL-ASO (no homologies to the mouse genome) were
dissolved in saline and injected subcutaneously at a dose of 150mg/kg per week
for the first 2 weeks and then 50mg/kg per week until the end of the study. Two-
month-old WT and AD mice were treated with FXII-ASO or CTL-ASO for
4 months (n 5 9-14 mice per group). Plasma was collected the day before the
treatment began (by tail clipping) and the day the mice were euthanized
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(retro-orbitally). In a pilot experiment, plasmawas collected at 2 weeks, 2 and 3
months after treatment, and at the end of the treatment for confirmation of FXII
depletion by western blots. Only male mice were used in the experiments.

Behavioral analysis

Allbehavioral experimentswereperformedandanalyzedbya researcherblinded to
genotype and treatment.Micewere acclimated to the testing roomfor6days before
the experiments and handled for 15 minutes per day for 6 days before the test.

Barnes maze and contextual fear conditioning

Barnes maze24 and conditional fear conditioning25 experiments were performed
as previously described.

Plasma preparation

Bloodwas collected through either the retro-orbital plexus or by tail clipping. For
retro-orbital bleeding, capillary tubes were coated with Gel Repel (Z719951;
Sigma) and 2.5 mg/mL polybrene (SC-134220; Santa Cruz) to block the
negatively charged surface. Mice were anesthetized, their retro-orbital plexus
was penetrated with the coated capillary tube, and blood was collected into
EDTA-coated tubes (BD Microtainer). Plasma was prepared by centrifugation
and frozen on dry ice. For tail clipping, a very small piece of soft tissue at the end
of the tail was clipped. Blood (20-30mL)was collected into EDTA-coated tubes
for plasma preparation.

Immunohistochemistry

Immunohistochemistry was performed as described.26 In brief, mice were deeply
anesthetized and perfused with saline, and their brains were collected. Brain
hemispheres were either prepared for western blots or fixed in 2% paraformalde-
hyde for brain sectioning and immunohistochemical analysis. Primary antibodies
used were against fibrinogen (Dako), CD11b (Developmental Studies Hybridoma
Bank), ionized calcium-binding adapter molecule 1 (Iba-1, Wako), glial fibrillary

acidic protein (GFAP, Dako), neuron-specific class III b-tubulin (Tuj1, Covance),
NeuN (Millipore), and Ab (BioLegend). Brain sections were incubated with
primary antibodies at 4°Covernight, rinsed in phosphate-buffered saline, and then
incubated with the appropriate fluorescent dye–conjugated second antibody.

Western blot analysis

Western blots were performed as described.27 Brain tissues were homogenized
on ice in 2% sodium dodecyl sulfate, 95mMNaCl, 25mM tris(hydroxymethyl)
aminomethane (pH 7.4), 10mMEDTA, and protease inhibitor cocktail (Roche).
After centrifugation, extracts were collected for western blot. Samples were run
on reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis,
transferred to polyvinylidene difluoride membrane (EMDMillipore), incubated
overnight at 4°C in primary antibody (rat anti-HK light chain, R&D Systems;
goat anti-FXII, Cedarlane; goat anti-PPK, R&D Systems; rabbit anti-transferrin,
Abcam; rabbit anti-GFAP, DAKO; and rabbit anti-Iba-1, Wako), and then
incubated with horseradish peroxidase–conjugated secondary antibody. Blots
were developed with Enhanced Chemoluminescent Substrate (Perkin-Elmer).
After stripping with Restore Plus Western Blot Stripping Buffer (Thermo
Scientific) at room temperature for 15 minutes, the membranes were reblotted
with transferrin antibody (Abcam) for plasma samples or glyceraldehyde-3-
phosphate dehydrogenase antibody (Abcam) for brain protein extracts. Protein
levels were quantified by using densitometry with NIH Image J. Western blot
results for plasma samples were normalized to transferrin, and brain protein
extracts were normalized to glyceraldehyde-3-phosphate dehydrogenase.

Imaging analysis

After immunostaining, brain sections were examined with a microscope
(Axiovert 200; Carl Zeiss) equippedwith Plan-Neofluar (103NA0.3, 203NA
0.5, and 403 NA 0.75) objective lenses at room temperature. The imaging
medium was air for all the objective lenses used. The AxioCam color camera
(Carl Zeiss) and AxioVision software (Carl Zeiss) were used for image
collection. Each set of stained sections was processed for images under identical
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Figure 1. The plasma contact system is activated at early disease stages in AD mice and temporally correlated with astrocyte and microglia/macrophage

activation in the brain. (A) Representative western blots probed with an antibody against mouse HK (mHK) light chain showing plasma HK levels in AD mice and their WT

littermates at 2, 3, and 6 months of age. (B) The levels of HKi (sum of mHK and mHK-ΔD5 bands) normalized to transferrin were similar in AD mice compared with WT

littermates at 2 months of age, but levels of HKi were significantly lower in AD mice compared with WT littermates at 3 and 6 months of age. (C) Representative western blots

probed with antibodies against GFAP and Iba-1 show astrocyte and microglia/macrophage activation in AD and WT mice at 2, 3, and 6 months of age. (D) GFAP expression

was similar between AD mice and their WT littermates at 2 months of age, but was significantly increased in AD mouse brain compared with that of WT littermates at 3 and

6 months of age, indicating the onset and prolonged activation of astrocytes in the AD mouse brain. (E) At 2 and 3 months of age, expression levels of Iba-1 were similar

between AD mice and their WT littermates. However, microglia/macrophage activation was significantly higher in AD mouse brain compared with brains of WT mice at

6 months of age. Student t test; n 5 12 mice per group per age. All values presented as mean 6 standard error of the mean (SEM). Results are from 2 independent

experiments. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; n.s., not significant.
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settings. Figures were prepared by using Adobe Photoshop and PowerPoint. For
quantification of fluorescence staining intensity, images were acquired and
thresholded by using NIH Image J. The total area of positive staining was
analyzed as a percentage of total cortex area, and the analyzer was blinded to the
genotype and treatment ofmice.An average of 3 to 4 different sections fromeach
mouse were analyzed (n5 9-14 mice per group)

Statistical analysis

GraphPad Prism software was used for all statistical analyses with Student two-
tailed t test, one-way analysis of variance, or two-way analysis of variance. All
numerical values presented in graphs are mean6 standard error of the mean.

Results

The plasma contact system is activated at early stages in

AD mice and temporally correlated with astrocyte and

microglia/macrophage activation in the brain

To analyze the time course of plasma contact system activation in
TgCRND8 AD mice (hereafter designated AD mice),22 we collected

plasma at 2, 3, and 6months of age (n5 12mice per group per age) and
examined intact HK (HKi, which is the sum of mouse HK [mHK] and
mouse HK without domain 5 [mHK-DD5]) levels by western blot. At
2months of age,HKi levelswere similar betweenADmice and theirWT
littermates (Figure1A-B).However,by3monthsof age,HKi levelswere
significantly lower in AD mice compared with their WT littermates
(Figure 1A-B).At 6months of age,HKi levels inADmicewere reduced
even further (Figure 1A-B). We also analyzed changes of intact mHK
and mHK-DD5 separately, and both showed a similar significant
decrease in AD mouse plasma at 3 and 6 months of age, but not at
2monthsof age (supplementalFigure1, availableon theBloodWebsite).
These results indicateHKconsumption,which is an indication of contact
system activation at early stages of disease progression in AD mice.

To investigate whether there is a relationship between plasma
contact system activation and brain inflammation, we analyzed acti-
vation of astrocytes (using GFAP) and microglia/macrophages (using
Iba-1 and CD11b) in the mouse brain. Both Iba-1 and CD11b are
markers formicroglia andmonocytes/macrophages, so the presence of
theseantigens could indicate activationofbrainmicroglia or infiltration
of circulating monocytes/macrophages into the brain; hereafter, we
refer to Iba-1– and/or CD11b-positive cells asmicroglia/macrophages.
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Figure 2. FXII-mediated contact system activation in AD mouse plasma. AD mice and their WT littermate controls were treated with FXII-ASO or CTL-ASO for 4 months.

Blood was collected at the end of the treatment, and FXII, PPK, and HK levels were determined by western blot. Transferrin was used to normalize the samples. (A)

Representative western blots (2 samples per group). (B) Plasma FXII level in CTL-ASO-treated AD mice was significantly lower when compared to that of CTL-ASO–treated

WT mice (Student t test, n 5 10 mice per group). Values are presented as mean 6 SEM. Results are from 3 independent experiments. (C) HKi levels in WT mouse plasma

were similar between groups, and HKi levels in CTL-ASO–treated AD mice were significantly lower than those in CTL-ASO–treated WT mice. In FXII-ASO–treated AD mice,

HKi levels were significantly higher compared to CTL-ASO–treated AD mice, but similar to FXII-ASO–treated WT mice. (D) PPK levels were similar in WT mice between

groups, but PPK levels in FXII-ASO–treated AD mice were significantly higher than those in CTL-ASO–treated AD mice. For (C) and (D), one-way analysis of variance,

(ANOVA), n 5 9-14 mice per group; all values presented as mean 6 SEM. Results are from 3 independent experiments.
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At 2 months of age, there was no significant difference in
expression levels of GFAP and Iba-1 between AD andWT littermates
(Figure 1C-E) by western blot. However, by 3 months of age, GFAP
expressionlevelwassignificantly increased inADmousebrainscompared
with WT mouse brains, whereas Iba-1 expression level did not
increase significantly (Figure 1C-E). At 6 months of age, expression
levels of both GFAP and Iba-1 were significantly increased in AD
compared with WT mouse brain (Figure 1C-E). These results
demonstrate a temporal correlation between the activation of the
plasma contact system and the onset of brain parenchymal astrocyte
andmicroglia/macrophage activation, suggesting that contact system
activation could contribute to neuroinflammation in AD.

FXII-mediated contact system activation in AD mice

Our results showed that the levels of HKi in AD mice were
decreased at the early stages of the disease. To investigate whether
decreased HKi in AD mice was mediated by FXII activation, we
used an ASO-mediated gene knockdown strategy to deplete FXII in
AD and WT mice. ASO directed against FXII can efficiently and

specifically deplete mouse FXII.23 Treatment with FXII-ASO or
CTL-ASO was initiated at 2 months of age and continued for 4 months
(n5 9-14 mice per group).

Plasma FXII was not detectable by western blot in FXII-ASO–
treated AD or WT mice (Figure 2A), indicating that ASO treatment
efficiently depleted the targeted protein. Plasma FXII in CTL-ASO–
treated AD mice was significantly lower when compared with CTL-
ASO–treated WT mice (Figure 2B), suggesting that FXII may undergo
activated-dependent consumption in the AD mouse plasma.

We then analyzed HKi changes between WT and ADmice treated
with FXII-ASO or CTL-ASO (Figure 2A,C). In WT mouse plasma,
HKi levels were similar between groups, indicating that FXII does not
mediate significant HK cleavage in the normalWT system. This result
is consistentwith FXII2/2mice,which haveHKi levels similar to those
ofWTmice.28 HKi levels in CTL-ASO–treated ADmice, as expected,
were significantly lower than those in CTL-ASO–treated WT mice.
Importantly, in FXII-ASO–treated AD mice, HKi levels were higher
compared with CTL-ASO–treated AD mice, but similar to FXII-
ASO–treatedWTmice, demonstrating that FXIIwas activated and that
it mediated significant HK cleavage in AD mice.
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Figure 3. Depletion of plasma FXII reduces astrocyte activation in the AD mouse brain. (A-E) Brain sections from WT and AD mice treated with CTL-ASO or FXII-ASO

were stained with an antibody against GFAP (A-D), and the cerebral cortex was analyzed (E). CTL-ASO–treated AD mice showed significantly higher expression of GFAP

(C,E) than CTL-ASO–treated WT mice (A,E). In FXII-ASO–treated AD mice, GFAP (D) was significantly reduced compared with CTL-ASO–treated AD mice (C,E). GFAP

expression was similar between CTL-ASO–treated (A,E) and FXII-ASO–treated (B,E) WT mice (one-way ANOVA; n 5 9-14 mice per group). Scale bar for panels A-D,

100 mm. (F-G) Western blot analyses of hippocampal extracts from WT and AD mice treated with CTL-ASO or FXII-ASO revealed that the expression level of GFAP was

significantly higher in CTL-ASO–treated AD mice than in CTL-ASO–treated WT mice. FXII-ASO treatment significantly reduced GFAP expression in AD mice when compared

with CTL-ASO treatment. The expression level of GFAP was similar between WT mice treated with FXII-ASO or CTL-ASO (one-way ANOVA; n5 9-14 mice per group; shown

here are representative western blots). All values presented as mean 6 SEM. Results are from 3 independent experiments.
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We also analyzed PPK changes in AD and WT mice treated with
FXII-ASO or CTL-ASO (Figure 2A,D). InWTmice, PPK levels were
similar in mice treated with CTL-ASO or FXII-ASO, indicating that
FXII did not mediate significant PPK activation in WT mice. In CTL-
ASO–treatedADmice,PPKlevelswere lower, suggestingconsumption
of the protein. However, treatment of ADmicewith FXII-ASO restored
the PPK levels to that observed in WT mice, indicating that the lower
levels of PPK in AD mice were the result of FXII activity.

Depletion of plasma FXII reduced brain inflammation in ADmice

Because we observed a correlation between activation of the plasma
contact system and the onset of brain parenchymal inflammation inAD
mice, we tested whether activation of the plasma contact system
contributes to brain inflammation. If so, then depletion of FXII in
plasma, which reduced activation of the contact system and HK
cleavage in ADmice, might reduce brain inflammation. To investigate
this possibility,we comparedGFAPand Iba-1 expression levels among
WT and ADmice treated with CTL-ASO or FXII-ASO in the cerebral
cortex and hippocampus (n5 9-14 mice per group) (Figures 3 and 4).
The expression levels of GFAP and Iba-1 were similar between WT
mice treated with CTL-ASO or FXII-ASO. In CTL-ASO–treated AD

mice, bothGFAP and Iba-1 levelswere significantly higher than inWT
mice, indicating neuroinflammation in AD mice. However, AD mice
treatedwith FXII-ASO showed significantly lower levels of GFAPand
Iba-1 expression than ADmice treated with CTL-ASO, signifying that
depletion of FXII reduced neuroinflammation in the AD mice. These
results show that depletion of FXII in the plasma reduced AD-related
inflammation in the brain, suggesting that activation of the plasma
contact system contributes to neuroinflammation in AD.

We also compared Ab deposition between AD mice treated with
CTL-ASO or FXII-ASO, and there was no significant difference
(supplemental Figure 2). However, the immunohistochemical staining
for CD11b and GFAP proximal to Ab plaques was significantly
reduced in FXII-ASO–treated ADmice, indicating that treatment with
FXII-ASOmainly affects glial cell activation (supplemental Figure 2).

FXII-ASO reduced fibrin deposition in AD mouse brains

AD is associated with prothrombotic conditions, andmicroinfarcts and
fibrin deposition are increased in AD brains.3,6,10,29 Activation of the
plasma contact system can potentially contribute to the prothrombotic
conditions in AD by activating the intrinsic coagulation pathway
throughFXI. To analyzewhether activation of the contact systemcould
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Figure 4. Microglia/macrophage activation is reduced in AD mice treated with FXII-ASO. (A-E) Brain sections from WT and AD mice treated with CTL-ASO or FXII-ASO

were stained with antibodies against Iba-1, and the cerebral cortex was analyzed (A-E). CTL-ASO–treated AD mice showed significantly higher expression of Iba-1 (C,E) than

CTL-ASO–treated WT mice (A,E). In FXII-ASO–treated AD mice, Iba-1expression (D-E) was significantly reduced compared with CTL-ASO–treated AD mice (C,E). Iba-1

expression was similar between CTL-ASO–treated (A,E) and FXII-ASO–treated WT mice (B,E) (one-way ANOVA; n 5 9-14 mice per group). Scale bar for panels A-D,

200 mm. (F-G) Western blot analyses of hippocampal extracts from WT and AD mice treated with CTL-ASO or FXII-ASO showed that the expression level of Iba-1 was

significantly higher in CTL-ASO–treated AD mice than in CTL-ASO–treated WT mice. FXII-ASO treatment significantly reduced Iba-1 expression in AD mice when compared

with CTL-ASO treatment. The expression level of Iba-1 was similar between WT mice treated with FXII-ASO or CTL-ASO (one-way ANOVA; n5 9-14 mice per group; shown

here are representative western blots). All values presented as mean 6 SEM. Results are from 3 independent experiments.
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play a role in this aspect, we compared fibrin deposition in the brains
of WT or AD mouse brains treated with CTL-ASO or FXII-ASO
(n 5 9-14 mice per group) (Figure 5). Blood vessels and microglia/
macrophages were stained by lectin. Neither WT group showed fibrin
deposition in thebrain.Consistentwithpreviousdata,30fibrindeposition
in the brains of CTL-ASO–treated AD mice was significantly higher
than inWT controls. FXII-ASO–treated ADmice showed significantly
reduced fibrin deposition compared with CTL-ASO–treated AD mice.
These results suggest that FXII mediates increased fibrin deposition in
the AD mouse brain, and depletion of FXII can reduce this deposition.

Depletion of plasma FXII reduced inflammation-associated

neuronal damage in AD mouse brains

Inflammation and fibrin deposition are associated with neuronal
damage and cognitive impairment in AD.30-36 To investigate
whether reduced neuroinflammation and fibrin deposition in FXII-
ASO–treated AD mice were associated with less neuronal damage
compared with CTL-ASO–treated AD mice, we examined the
relationship between microglia/macrophage activation and neuro-
nal damage (n 5 9-14 mice per group) (Figure 6). CD11b immunohis-
tochemistrywasused to indicatemicroglia/macrophageactivation,andTuj1

immunohistochemistry was used to show neuronal morphology and
integrity. InWTmice, there were no detectable changes in microglia/
macrophage-associated Tuj1 staining. In the brains of AD mice
treated with CTL-ASO, there were regions with robust CD11b
immunostaining that correlated with decreased Tuj1 immunostaining,
indicating that activated microglia/macrophages were spatially asso-
ciated with neuronal damage. Treatment of AD mice with FXII-ASO
reduced this microglia/macrophage-associated neuronal damage. We
also comparedNeuN staining (a neuronalmarker) among these groups,
which revealed that NeuN staining was significantly reduced in CTL-
ASO–treated AD mice compared with CTL-ASO–treated WT mice,
whereas FXII-ASO treatment significantly restored NeuN staining in
AD mice (supplemental Figure 3). These results showed that reduced
inflammation in FXII-ASO–treated AD mice is associated with less
neuronal damage compared with CTL-ASO–treated AD mice.

Depletion of plasma FXII improved cognitive function in

AD mice

Because fibrin deposition, neuroinflammation, and neuronal
damage were reduced in brains of AD mice upon FXII depletion,
we analyzed whether these changes were associated with memory
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improvement. Two-month-old AD mice were treated with CTL-
ASO or FXII-ASO for 4 months and then tested for cognitive
performance by using the Barnes maze (n 5 9-14 mice per group)
(Figure 7A-D), which assesses spatial learning and memory in
rodents.37 During training, FXII knockdown slightly improved
spatial learning in AD mice, but the difference was not significant
(Figure 7A). During the memory retention test, CTL-ASO–treated
AD mice spent a significantly longer time finding the target hole
and had significantly fewer visits to the target hole compared with
CTL-ASO–treated WT mice, confirming that memory retention is
impaired in AD mice at this age.31 FXII-ASO–treated AD mice
spent less time finding the target hole and had significantly more
visits to the target hole compared with CTL-ASO–treated AD
mice (Figure 7B-C). FXII depletion had no effect on WT mice in
these tests. These results showed that treatment of AD mice with
FXII-ASO improved their spatial learning and memory.

We examined locomotor function of these mice by measur-
ing the total distance traveled during probe trials. WT and AD
mice treated with CTL-ASO and FXII-ASO traveled similar
distances during the trials (Figure 7D). This result indicates that
the locomotor function of all mouse groups was similar, and the
difference in latency and number of target hole visits is a function of
memory.

We also tested cognitive function in these mice by using contextual
fear conditioning. WT and AD mice treated with CTL-ASO or FXII-
ASO had similar baseline freezing behavior (Figure 7E). However, as
expected,31 CTL-ASO–treated AD mice showed a memory deficit
compared with CTL-ASO–treatedWTmice 24 hours after the training
(Figure 7F). FXII-ASO–treated AD mice showed a significant im-
provement in memory when compared with CTL-ASO–treated AD
mice (Figure 7F). This result corroborates the results from the Barnes
maze and shows that depletion of FXII can ameliorate the cognitive
deficit in AD mice.

Discussion

Previous studies have shown that Ab can activate the plasma contact
system both in vitro and in vivo.17-20,38-40 In AD patient plasma, levels
of activated FXII, HK cleavage, and kallikrein activity are increased
compared with control plasma.19 Moreover, cleavage of fibrinogen, a
major clot protein, is also increased in AD patient plasma, indicating
activation of the coagulation pathway.20 Consistent with the increased
fibrinogen cleavage, levels of FXI are decreased in AD patient
plasma,20 suggesting contact system–dependent consumption of FXI.
These results suggest that both coagulation and inflammatory pathways
of the contact system are activated in AD patient plasma. AD patients
show increased incidence of brain microinfarcts,11,41 stroke,4 fibrin
deposition, and inflammation in the brain,30,33,42-45 all of which are
consistent with a role for contact system activation in AD pathology.

In two different mousemodels of AD, Tg679946 and TgCRND8,22

in which AD pathology is driven by the overexpression of human Ab,
HK cleavage is increased (Figure 1).19 Injection of human Ab peptide
intoWTmice also increasedHKcleavage,19 indicating thatAb is likely
an activator of the contact system in vivo. In this study, we showed that
HKi levels inADmicewere significantly lower than those inWTmice.
After FXII knockdown, HKi levels in ADmice were higher than those
in control AD mice (Figure 2), indicating that FXII mediates HK
cleavage in ADmice. ADmice also have increased blood clotting and
fibrin deposition in the brain,30,31,33 and reducing fibrinogen levels
in these AD mice improved their cognitive abilities.33 The results
presented here show that depletion of FXII in AD mice reduced fibrin
deposition and ameliorated their cognitive decline (Figures 5 and 7).
Our previous study showed thatAb42-mediated thrombingeneration is
FXII dependent but extrinsic coagulation pathway independent,20 and
therefore increased fibrin deposition in the AD brain is likely mediated
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by FXII. Taken together, these results fromADmouse models support
a role for contact system activation in AD pathogenesis.

Inflammation plays an important role in AD pathology. Microglia
and astrocytes are activated and found surrounding Ab plaques in
postmortem brain tissue of AD patients. Cytokine expression is also
increased inAD brains.14,15 In manyADmouse models, inflammation
is evident with robust microglial and astrocyte activation.15,31,44 Ab
deposition may play an important role in neuroinflammation in the AD
brain, but other factors may also contribute.47

Bradykinin, released by activation of the contact system, is an
inflammatorymediator.48 It can increase vascular permeability, leading
to vascular leakage and angioedema.49 Bradykinin is involved in
inflammatory responses in the peripheral and central nervous systems
through the activation of 2 receptors, B1R and B2R. B2R is con-
stitutively expressed in various tissues and cell types, whereas B1R
is induced upon stimulation or tissue damage.50,51

Bradykinin and its receptors may play important roles in AD
pathology and AD-associated cognitive impairment. B2R is expressed
in the cerebrovascular endothelial cells, whereas B1R expression is
increased in astrocytes, neurons, and vascular cells of AD mice.52,53

Infusion of theAb peptide into the rat brain increases bradykinin levels

in the cerebrospinalfluid andB1Rexpression in brain regions related to
memory.54 Moreover, this phenomenon is accompanied by memory
disruption and neuronal loss.

The increase in contact system activation in plasma of both AD
patients and AD mice19,20,40 could result in increased bradykinin
release due to HK cleavage, which could in turn activate B2R on the
cerebrovascular endothelial cells and increase blood brain barrier
(BBB) permeability.44,45,55-58 Our results show that fibrin deposi-
tion in FXII-ASO–treated AD mice was reduced, indicating that
activation of the contact system may contribute to increased BBB
permeability in AD, whereas FXII-ASO treatment protects against
vascular leakage (Figure 5). A compromised BBB in AD would
allow plasma proteins, including components of the contact system
and bradykinin, to leak into the brain. Contact system proteins in the
brain parenchyma could be activated locally by Ab,17-20,38-40 which
is highly concentrated and deposited in the brain parenchyma.
Indeed, in postmortem AD patient brain sections, researchers have
shown that FXII codeposits with parenchymal Ab plaques.59

Cerebrospinal fluid from AD patients has increased contact system
activation and HK cleavage,21 indicating that the contact system is
activated in the brains of AD patients.49
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Activation of the contact system in the brain would result in
bradykinin production,which could activateB1R in parenchymal cells,
such as astrocytes, to promote neuroinflammation. B1R antagonist
treatment of an APP transgenic AD mouse model improved spatial
learning.52 Although B1R is mostly expressed in astrocytes in the AD
mouse model, the B1R antagonist reduced microglial activation,
indicating that B1R may mediate astrocyte regulation of microglial
activation in AD.52 In the TgSwDI AD mouse model, blockage of
B1R also decreases accumulation of activated microglia and reactive
astrocytes, diminishes NF-kB activation, and reduces cytokine and
chemokine levels in the brain.53 In addition, genetic deletion of B1R
also improves cognitive deficits in a mouse model of AD.60 These
results further support that bradykinin receptors play a role in AD. Our
results showed that contact system activation is temporally correlated
with astrocyte activation in the AD mouse brain. ASO-mediated
depletion of FXII in AD mouse plasma diminished HK cleavage
(Figure 2), which would inhibit bradykinin release, and resulted in
reduced astrocyte and microglia/macrophage activation (Figures 3 and
4), suggesting that the plasma contact system may regulate brain
inflammation in AD at least in part through B1R.

In addition, fibrin deposition in the central nervous system61-63 and
in the AD brain is known to cause inflammation.30,33,44 Because
depletion of FXII reduced fibrin deposition in the ADmouse brain, the
reduced brain inflammation in FXII-ASO–treated ADmice could be a
combination of a functional change of bradykinin and reduced fibrin
deposition.

On the basis of our studies, we hypothesize that increased FXII
activation in AD patient and AD mouse plasma converts PPK
to kallikrein, which cleaves HKi to release bradykinin. Elevated
plasma bradykinin may increase BBB permeability leading to plasma
bradykinin leakage into the brain which, in turn, could activate
bradykinin receptors in the brain and promote neuroinflammation and
neuronal damage. Furthermore, a compromised BBB in AD would
allow plasma contact system proteins to leak into the brain parenchyma
where they could be activated by Ab, further increasing bradykinin
receptor activation and inflammation. In addition to these effects,
increased FXII activation can initiate the intrinsic coagulation pathway
via FXI, leading to clot formation, vascular occlusion (hypoperfusion),

and fibrin deposition (increased BBB permeability in AD can
also contribute to fibrin deposition), which is known to trigger
neuroinflammation.61 As a result, activation of both inflammatory
and coagulation pathways could ultimately promote neurodegenera-
tion and cognitive decline (supplemental Figure 4).
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